Skip to main content

Laplacian Eigenfunctions



You can get very interesting result when plotting different linear combination of eigenfunctions of the Laplacian on a given (convex) shape. Here I use a square plate [0,1] by [0,1] and show the zero iso-value of the some of such linear combination. As time evolves, the linear combination changes.


Since the Eigenfunctions are symmetric, I only plot them on the [0, 0.5] interval.  In that case, the eigenfunction are of the form

With (n1,n2) such that
The associated eigenvalue l= 340*pi^2 is of multiplicity 4 (12,14) (18,4) (14,12) (4,18). Below, same thing with l = 5525 which is of multiplicity 12.

Those isocontours are called nodal lines. By the unique continuation property, those nodal lives consist of curves in the interior of the domain (her a square, but the result is valid for any convex shape) which are infinetly differentiable. You may also note, but that is a well known theorem, that when nodal lines interesect a boundary (except may be at corner points), then they form egal angle. A single nodal line intersects the boundary with right angles, two intersect it at 60° angles, and so forth. This also explain why traction/compression cracks always cut boundaries of their domain at right angles, but that's another story.

Well, my point here was not simply to show funny stuff, but also to point out that using gnuplot and image magick is really simple to create animations.

Comments

Popular posts from this blog

Shear waves, medecine and brain

Yesterday evening, too bored by what TV was proposing to me, I decided to watch a conference of Mathias Fink , a french researcher working on multidisciplinary application of waves. Specially shear waves.  Here is a brief summary of his talk. In solids, waves have two principal components:  compression waves (P-waves for primary) moving in the direction of propagation, and shear waves (S-waves, for secondary) that make ripples in the plane orthogonal to that direction. Since compression waves propagate in the direction of propagation, they move faster than shear waves. Usually ultrasound equipment in medicine only use compressional waves. But since human tissues have a high bulk modulus, the P-wave speed is relatively constant (around 1580 m/s). Human tissues are very stiff if you apply isotropic constraints on them (like pressure of water). However M. Fink and his colleagues proposed a new way to investigate human tissues by first sending a strong compressional wave in ...

Hypnothic patterns of integrer decomposition

http://www.datapointed.net/visualizations/math/factorization/animated-diagrams/

MultiThreading and Direct Solvers

The next step towards an efficient Hybrid Solver is to optimize the computation of the Schur complement on each subdomain. Actually this part of the algorithm is the slowest, and it can be very slow. First of all the reordering is special, since the degrees of freedom on the interior must be numbered first. I use the CAMD ordering by Tim Davis and al., that provide satisfaying enough orderings. After that, I am concentrating on the code that computes the Schur complement. There is much work to do here. At the begining I was thinking about using MUMPS for this, since it has a subroutine for Schur complement computation and it is multithreaded. By googling around I found there is may be a (slightly) better solution, that would be to implement a sparse Cholesky solver based on the Direct Acyclic Graph (DAG) of the tasks. The computational tasks and their dependencies are expressed as an acyclic graph which is used to organize the thread hierachy to compute the Cholesky decompositio...