Skip to main content

Laplacian Eigenfunctions



You can get very interesting result when plotting different linear combination of eigenfunctions of the Laplacian on a given (convex) shape. Here I use a square plate [0,1] by [0,1] and show the zero iso-value of the some of such linear combination. As time evolves, the linear combination changes.


Since the Eigenfunctions are symmetric, I only plot them on the [0, 0.5] interval.  In that case, the eigenfunction are of the form

With (n1,n2) such that
The associated eigenvalue l= 340*pi^2 is of multiplicity 4 (12,14) (18,4) (14,12) (4,18). Below, same thing with l = 5525 which is of multiplicity 12.

Those isocontours are called nodal lines. By the unique continuation property, those nodal lives consist of curves in the interior of the domain (her a square, but the result is valid for any convex shape) which are infinetly differentiable. You may also note, but that is a well known theorem, that when nodal lines interesect a boundary (except may be at corner points), then they form egal angle. A single nodal line intersects the boundary with right angles, two intersect it at 60° angles, and so forth. This also explain why traction/compression cracks always cut boundaries of their domain at right angles, but that's another story.

Well, my point here was not simply to show funny stuff, but also to point out that using gnuplot and image magick is really simple to create animations.

Comments

Popular posts from this blog

5 Tips to work with legacy code

As engineers, we like to move things forward and, for those who have a little bit of experience (like me), having to work with legacy code can be a huge set back because we know it can be long, painful and slow-paced. But you don't have to make it harder that it needs to be for you and your team! Below are some common mistakes that occur when working with legacy code and possible ways to overcome them. 1. Should you really use it? That's probably the first and foremost question. Is it really necessary for your application to tap into this legacy code? Have you done extensive researches to see if there isn't a more modern library out there, with better licensing, design, architecture, library initialization, newest code features, documentation, unit tests, whatever than this old piece of code which is on your shelves? In case there is, ponder with caution the possible consequences of any choice, using as many criteria that you care for! Remember that this is an important cha

Shear waves, medecine and brain

Yesterday evening, too bored by what TV was proposing to me, I decided to watch a conference of Mathias Fink , a french researcher working on multidisciplinary application of waves. Specially shear waves.  Here is a brief summary of his talk. In solids, waves have two principal components:  compression waves (P-waves for primary) moving in the direction of propagation, and shear waves (S-waves, for secondary) that make ripples in the plane orthogonal to that direction. Since compression waves propagate in the direction of propagation, they move faster than shear waves. Usually ultrasound equipment in medicine only use compressional waves. But since human tissues have a high bulk modulus, the P-wave speed is relatively constant (around 1580 m/s). Human tissues are very stiff if you apply isotropic constraints on them (like pressure of water). However M. Fink and his colleagues proposed a new way to investigate human tissues by first sending a strong compressional wave in the tissu

Robust Stable Objects Deformation

In this entry, I'll briefly speak about computing robustly the deformation on a given object represented by a Finite Element mesh. There are a handful of methods to do that more or less robustly, and I'll just discuss them, with a speaking a little bit about their distinctive aspects. Classic lagrangian formulation The most used one in industrial commercial packages (like abaqus, ansys, etc). This is simply a linearization of Green-Lagrange strain tensor and deriving it to get the proper residual and stiffness matrix from one single Newton step. This method is absolutely rigourous, meaning that as long your mechanical behavior is well captured by the strain model  you'll get reliable results. However it has two main drawbacks: first you have to be careful when applying new forces or constraints and do it incrementally otherwise you may really blow up your model. For instance applying too much force will cause some elements to invert which won't be re-inverted thanks